
Abstract

The theory of building artificial intelligence is 
reviewed including both biological and informa-
tional concepts. Based upon conclusions from 
Gödel’s Incompleteness Theorem and Hilbert’s 2nd

Problem, building a hierarchical system is pro-
posed. Each level of the system has different plas-
ticity, and components of one level are partially 
duplicated in the levels above. The system is built 
using a neural network and is referred to as an in-
ductive automaton, which is an emulation of a 
closed physical system. Related physical laws are 
then studied and Boltzmann’s entropy is proved to 
be anthropomorphic. Further it is proposed to use 
entropy to discover “unexpected truths” while 
groups of neurons combining various knowledge 
units are in the “hi-dissipation” state of energy 
consumption which corresponds to Boltzmann’s 
entropy being at its maximum. To complete induc-
tive automaton’s architecture, Emotion Centre is 
introduced as a mechanism of neural network ac-
tivity modulation. Gnostic neuron’s memory func-
tion is treated as a general phenomenon with 
memorizing being a mechanism of self-
organization of inductive automaton, suggesting 
that inductive automaton must solve one basic task 
– memorizing of external and internal information 
flow.

1 Self-organization 
The general principle of self-organization of information 

has already proved useful in various pattern recognition and 
classification tasks.  Self-organizing neural networks draw 
inspiration from the functionality of biological neurons and 
the brain, which might suggest their usability also in pro-
ducing higher, human-like forms of intelligence [Fausset, 
1995], [Allinson, 1992]. Typical neural networks however, 
are really not ‘bio-logical’ or organic in their basic network 
architecture or functionality. They are rather hardwired 
structures with adaptive connections between the modeled 
‘neurons’. 

Since there are few working algorithms or implementa-
tions for the self-organization of formalized organic sys-
tems, in this paper we chart the possibilities of building AI 
systems based on genuinely organic formalized models and 
consider the physical and philosophical nature and implica-
tions of such systems. 

The formal foundations of organic systems have been 
studied in detail by Chilean biologists Humberto Maturana 
and Francisco Varela [Maturana and Varela, 1987] under 
the general topic of Autopoietic Theory. "An autopoietic 
machine is a machine organized (defined as a unity) as a 
network of processes of production (transformation and 
destruction) of components that produce the components 
which: (i) through their interactions and transformations 
continuously regenerate and realize the network of proc-
esses (relations) that produced them; and (ii) constitute it 
(the machine) as a concrete unity in the space in which they 
(the components) exist by specifying the topological domain 
of its realization as such a network [Maturana and Varela, 
1980]”. Cells, for example, keep producing protein compo-
nents that know how to combine with each other to sustain 
both the external border of the cell and its internal compo-
nent factory – the main product of the factory is the factory 
itself, engines and walls included.

In the case of the human brain and its neural signaling the 
role of self-reference is obvious. Only about 1 % of the es-
timated 100 billion neurons of the brain are receiving direct 
signals from sensory organs or sending out direct signals to 
the muscles [Hebb, 1949]. Most neural pathways and synap-
tic connections are engaged in the internal communications 
of the brain. The self-referential network topology is further 
reflected in the signal dynamics of the brain: the dynamic 
states of the brain can be considered to be mainly a product 
of pre-existing dynamic states of the brain, not of the imme-
diate sensory input.

Attempts to describe principles of self-referential algo-
rithmic base were given the name of Hilbert’s 2nd Problem. 
Alan Turing concluded in research on his machine that it is 
impossible to use algorithms of some formal logical system 
for control of the system itself, produced by given algo-
rithms. Later Gödel’s Incompleteness Theorem gave a more 
general outlook to the problem. 

According to Gödel’s Theorem (mathematical definition 
of the theorem), within any given branch of mathematics, 
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there would always be some propositions that couldn’t be 
proven either true or false using rules and axioms of that 
mathematical branch itself. The implication is that all logi-
cal systems of any complexity are, by definition, incom-
plete; each of them contains, at any given time, more true 
statements than it can possibly prove according to its own 
defining set of rules. Gödel’s Theorem suggests that a com-
puter can never be as smart as human being because of the 
extent of its knowledge is limited by a fixed set of axioms, 
whereas people can discover unexpected truths [Jones and 
Wilson, 1995]. Nonetheless we strongly believe in the op-
posite and suggest that self-reference should be imple-
mented by means of building hierarchically structured or-
ganic formalized models, where each level has different 
plasticity, and components of one level are partially dupli-
cated in the levels above. The proposed structure thus is 
very similar to the hierarchical neural structure of the brain, 
while ability to discover unexpected truths found in the 
brain can be achieved through efficient application of 
Boltzmann’s entropy in information processing [Prigogine 
and Stengers, 1984].  

In genuinely organic models under the term “formaliza-
tion” we firstly understand ability to interpret. Fresh data 
just received by the system from the outside, should be as-
signed connections to the exact data already available to the 
system. Secondly we understand ability to generate. The 
system itself should be able to produce new values, produc-
tion of which is dictated by the inability of the system to 
carry on with interpretational function. Thirdly it is a recur-
sive process of checking all available information for non 
contradiction of a re-built system of new connections (inter-
pretation) with newly received values (generation). This is 
particularly important since every time new data is received, 
the system’s architecture inevitably changes. 

2 Entropy and Information Processing
Holy Entropy! It's boiling!

[Gamow, 1965]

2.1 Entropy
There is some kind of mystique about entropy. According 

to [Denbigh, 1990], [Tribus, 1963], von Neumann suggested 
to Shannon the use of the word “entropy” adding that “it 
will give you a great edge in debates because nobody really 
knows what entropy is anyway”. The 2nd law of thermody-
namics appears both in thermodynamics and in kinetic the-
ory, in thermodynamics it is postulated, but in kinetic theory 
2nd law is introduced by Boltzmann. Boltzmann’s entropy,
defined as a function of the values taken by the macroscopic 
variables, equals the logarithm of that volume, where micro-
scopic variables are the positions and the momentum of the 
particles [Boltzmann, 1974]. This way entropy looks quite 
arbitrary. We may define as many types of entropy as we 
can find sets of macroscopic variables since kinetic theory 
doesn’t differentiate micro from macro particles. Boltz-
mann’s theory suggests that the act of collision occurs in 
such a way that the particles after collision have no “mem-
ory” of their precondition and their distribution is not related 

to speeds and other characteristics of particles before the 
collision. Integrals of movement (summed energy, impulses, 
etc) are kept. This way the collision itself is located out with 
kinetic theory. At the moment of collision particles lose 
their individuality and importantly, correlations of high or-
ders between variables, used to describe particles, disappear 
too. If one looks at collision as a process of power interac-
tion between particles, then it is possible to apply Liouville's 
theorem to the movement of the particles [Ma, 1985]. The 
theorem states that the phase volume of a system of parti-
cles, and respectively entropy (according to Boltzmann) stay 
unchanged. The equation of kinetic theory, suggests a pro-
jection of equations in a phase space of high dimension (di-
mension is directly proportional to the number of particles) 
on a simpler phase space [Lebowitz and Penrose, 1973].  In 
thermodynamics, the standard phase space is the one of 
Gibbs [Jaynes, 1991]. However if another phase space is 
taken, then different entropy will be derived. It is because of 
the fact that entropy can be derived from other phase spaces 
that we conclude that reached entropy is objective only in 
terms of corresponding phase space. Jaynes, following 
Wigner, calls entropy “anthropomorphic” [Jaynes, 1983]. A 
better word might be “contextual”, i.e. entropy depends on 
the physical situation and on its level of description.

2.2 Information Processing
As mentioned in previous paragraphs, the concept of en-

tropy is highly important, as it is responsible for the genera-
tion of new abstracts or “unexpected” truths using only the 
information available to the system. Thus entropy is closely 
related to the processing of information.

While it is true that "energy" correlates with the velocity 
of particles (e = mv2 ) and that particles with higher energy 
spend more time in more places than slower particles higher 
energy particles are better able to surmount and escape bar-
riers which stop slower particles [Lestienne, 1990] . Con-
trary to the common belief human aspire to maximum en-
tropy rather than minimum [Prigogine, 1996]. In the bio-
logical system of the brain processing of information in the 
form of memory imprints and memorized scenarios is 
clearly useful mechanism for survival and higher forms of 
self-fulfillment. This also clearly represents process of re-
ducing entropy in the information processing system of the 
brain. On the other hand, being able to generate creative 
new scenarios and fresh solutions out of memorized mate-
rial in unpredictable external conditions conveyed to the 
brain by sensory inputs is a contrary process where entropy 
in the brain's information processing system is increased in 
order to enable new configurations to emerge. 

For use in this article, relation between entropy and 
methods of processing information is defined as follows:

I(Y, X) = H(Y) – H(Y ׀ X)

I – Information, H – Entropy, X – Input, Y – Output

Importance of information processing is hidden in ability to 
choose adequate model, describing given information. Uni-



versal approach to choosing a model is a method of building 
a description of minimal (lesser) length. 

t*=ARGMIN{f(x^N|t):t in T}

T – Model’s space

f(x^N) – Length of description of a sequence of N realiza-
tions of random value x, equal on average to N*H(x), where 
H(x) is entropy (Shannon's Source Coding Theorem).
Conceive 
Accordingly entropy can be described as follows. If the ran-
dom value x has probability density of P(x), then its entropy 
is equal to 

H(x) = −INT [p(x)*log (p(x)) dx]
There is no code, using which it is possible to transmit 

any information, consisting of N miscorrelated realizations 
of random value x with less than N*H(x) bit. Meaning en-
tropy is an average number of bits, needed to describe one 
realization of a random value. However there always exists 
a code with random length H(x) + 1 (for one realization). 
Huffman’s algorithm describes such a code. By code reflec-
tion of sets of possible meanings of the random value in 
binary sequence is understood.

Latter suggests that if there is a formalized structure, in-
volved in processing of some information flow, its architec-
ture should be developed through the properties of incoming 
information flow. 

3 Inductive Automaton
As mentioned above in our research we propose building 

an organic formalized system by means of a hierarchical 
neural network. We refer to this network as ‘inductive 
automaton’ and partially base it on some of the concepts 
proposed by Emelyanov-Yaroslavsky in 1990 [Emelyanov-
Yaroslavsky, 1990]. The main idea was not to implement a 
specific functionality of each class of tasks but to define one 
basic task – energy consumption minimization and then to 
obtain all other functionalities as consequences of it, that is, 
as by-products. 

The second criterion of developing that network was to 
look for a strong analogy between the artificial network and 
natural neural systems. Our research largely depends on the 
field of neurodynamics which has advanced steadily in the 
past quarter century. Based on the studies of the brain, neu-
rodynamics suggest that brains are hierarchically organized, 
with multiple levels from quanta to neurons, and yet more 
levels from neurons to societies of brains [Freeman, 1975].
It also assumes that brain functions can be approached by 
separation into domains with the independent variables of 
space, time, and amplitude, thereby avoiding, in first ap-
proximations, the complexity of nonlinear, time-varying, 
non-stationary equations. Entropy, the phenomenon of or-
ganized disorder constantly changing with fluctuations 
across the edge of stability, is not to be discarded and it is 
directly addressed in this paper. 

Researches in artificial intelligence can be divided into 
two groups: informational and biological approaches. In our 
research we assume that the combination of those two ap-
proaches is the key to success and in this paper we will fo-
cus on both perspectives. Inductive automaton, like natural 
neural networks, has emotional centre that controls levels of 
activity in network and excitatory links formation. Our opin-
ion is that the explanation of emotional centre function and 
memory function, presented by Emelyanov-Yaroslavsky
[Emelyanov-Yaroslavsky, 1990], is not complete, as there is 
no mention of entropy which we consider to be definitive in 
information processing both found in nature and directly 
related to energy consumption minimization. During his 
investigation the author is trying to understand bio-logical 
natural neural networks and different mechanisms observed 
in natural networks but he is not trying to answer a question: 
why are all these complicated mechanisms needed? The 
question arises: is it is possible to use more simple and 
transparent mechanisms that provide the same intelligence 
with a little loss of functionality? These questions are not 
answered in his monograph about inductive automaton. 
Therefore, there is a need for additional investigation.

4 Memory Function
Proceeding similarly to Emelyanov-Yaroslavsky, we sug-

gest considering memory as a general phenomenon. How-
ever in our research we define memory as an organizational 
component of neurocybernetics. Memory can be observed in 
various biological systems. We assume memorizing to be a 
mechanism of self-organization of inductive automaton. We 
will say that external or internal information flow is memo-
rized by inductive automaton if and only if it is able to re-
produce this information flow. This understanding makes it 
possible to separate a number of layers in the system’s 
structure. We can identify a logical layer consisting of se-
quences of neuron activations in neural network to external 
stimuli and previous internal reactions, and a physical layer 
consisting of connection links between groups of neurons 
that store and link information and neurons themselves that 
interpret stored information. It is well known, that neural 
networks can realize an associative memory function
[Pchelkin, 2003]. We assume that the network primarily 
stores memorized sequences and then only static images. 
That’s why we describe our neurons as being Gnostic. 

In Neurocognitive Theory, Gnostic cells are neurons that 
are capable of possessing memory of something complex 
(such as the image of someone's face). Associative memory 
function could be understood as follows: if in situation S a 
neural network has generated reaction R (sequence of single 
activation) then next time in the same situation S the prob-
ability of the same reaction R must increase [Pchelkin, 
2003]. Thus, inductive automaton records only such se-
quences as they are able to reproduce. We consider this 
property as the key mechanism for the formation of more 
and more abstract models of external information flow. 
Therefore, we propose to analyze another point of view on 
memory – memory is something that can restore informa-
tion. This helps defining abstractions formation process as a 



consequence of memorizing unlimited information flow by 
physically limited in capacity memory storage referred to as 
long-term memory. Consequently, we can define abstraction 
as something that helps to restore information without re-
cording it (or by minimal recording). Abstractions can be of 
N-levels, each further away level having lesser connection 
with original information. Accordingly when abstraction of 
N-level evolve (at least 3rd level) they don’t have any direct 
interpretation of original information, and are kept only in 
verbal form and are used only in context. Here it seems to 
be interesting to observe hypothesis that ability to verbalize 
allows human to create abstractions of higher levels. 

While process of memorization is done by limited long-
term memory, traditionally represented by cognitive neuro-
scientists in terms of the structure of a neural network’s 
connections, short-term memory is represented in terms of 
the patterns of activation across the network [Hebb, 1949],
[Caianiello, 1961]. However, recent neural-network models 
of short-term verbal working memory (VWM) have used 
modifiable structural connections to encode item and order 
information [Hartley and Houghton, 1996], [Burgess and 
Hitch, 1999]. In these models, words are stored by changing 
the connection weights between linguistic units, and phe-
nomena related to VWM are thus modeled with long-term 
memory structures and mechanisms. Accordingly, the for-
mation of a structure must imply memorizing, and growth of 
logical layer based on fixed physical layer. This process is 
possible only when an inductive automaton is able to suc-
cessfully search for new abstract forms of memorized in-
formation. Thus, the formation of a long-term memory 
structure implies formation of the more abstract model of 
the external world.

5 EC – Emotional Centre
The main output parameter of a neuron is spike fre-

quency, therefore the transfer function of the neuron is 
gradual, but unlike a popular sigmoid it has not two, but 
three stable states: inactive, half active and fully active. Af-
ter full activation of a neuron occurs, self-locking and 
forced deactivation of the neuron takes place because full 
activation is only a temporal state. However, a neuron can 
maintain half active state for a longer period of time. The 
half active state of a neuron corresponds to a state of “hi-
dissipation” in which energy consumption becomes greater, 
while the fully active state corresponds to a state of “lo-
dissipation” as it allows the economy of energy over the 
longer period of time. The idea of self-organization is based 
on these two qualitative states of “hi-dissipation” and “lo-
dissipation”: the inductive automaton builds new links be-
tween neurons in order to make the state of the network 
better. The state of "hi-dissipation" for the network is de-
fined by the number of half active neurons. 

Emelyanov-Yaroslavsky introduces an Emotional Centre 
(referred to as EC) to make such self-organization more 
efficient [Emelyanov-Yaroslavsky, 1990]. EC is a mecha-
nism of neural network activity modulation. It is a subset of 
special neurons. These special neurons control other neu-
rons (Gnostic memory neurons) by two parameters: (1) the 

shared threshold D (in the original concept [Emelyanov-
Yaroslavsky, 1990] this threshold was not distinctly referred 
– it is only a coefficient of the dynamic threshold of a neu-
ron, this coefficient depends on the state of an EC shared 
between all neurons) and (2) the reinforcement coefficient 
that determines proportion of temporal links that transform 
to persistent links. The first parameter controls the activity 
of neural network while the second one is self-organizing. 
EC needs a regular influence from memory neurons. EC and 
memory neurons are interacting as an oscillating system. In 
the state of "lo-dissipation" of EC the value of the shared 
threshold D must increase. It makes more difficult for mem-
ory neurons to reach a fully active state. After a very short 
period of time the state of EC must become worse. But in 
the state of "hi-dissipation" of EC the value of the shared 
threshold D must decrease making it easier for memory neu-
rons to reach a fully active state, and resulting in EC switch-
ing to the state of “lo-dissipation”. The value of the rein-
forcement coefficient increases only during improvement of 
the state of EC. Such interrelations between EC and mem-
ory neurons promote the setting of the oscillatory process: 
the state of "lo-dissipation" in EC creates the state of "hi-
dissipation" in memory neurons. The state of "hi-
dissipation" in memory neurons creates the state of "hi-
dissipation" in EC, and the state of "hi-dissipation" in EC 
activates the network that consecutively reaches the state of 
"lo-dissipation". During these oscillations the EC controls 
count of half active neurons. 

Since an inductive automaton is a self-organizing (with 
formalization) emulation of a closed physical system, as a 
consequence it obeys physical laws. Through modeling of a 
closed physical system, interesting behavior was observed: 
Boltzmann’s entropy of the system was at first increasing 
but later, with appearance of fluctuations, it decreased to its 
minimum. This leads to a conclusion that when EC is in the
state of “lo-dissipation” the entropy of the system in given 
phase space is at its minimum. With oscillations continuing,
it starts growing till the network neurons reach full activa-
tion. At this moment entropy is at its maximum and new 
combinations of information are produced until physical 
fluctuations appear and result in a lock-out and respectively 
change to the state of “lo-dissipation” of the network as en-
ergy consumption returns to minimum. Before each activity 
reaches its maximum half activation occurs (the state of 
consistent recovery), but after each maximum the deactiva-
tion of active neurons occurs, and the activity is transferred 
to other groups of neurons. Thus network activity maxi-
mums correspond to the minimal value of shared threshold 
D and maximum value if entropy. 

6 Hierarchical Neural Network
As stated earlier we propose building an inductive 

automaton as a hierarchical neural network. Levels of hier-
archy are unimodal sensory Gnostic neurons (referred to as 
memory neurons capable of 'knowing' about something or 
possessing memory of something), multimodal sensory 
Gnostic neurons, and abstractions of the first level to the
abstractions of n-level. Thus in practical terms for every 



knowledge unit there exists a network-(1) of neurons. Later 
neurons of network-(1) come together and form abstract 
neural network-(2). Further all neurons of abstract network-
(2) unite with other neural networks having logical relations
with network-(1) and form network-(3) which contains a 
full description of knowledge unit. The final network-(3)
will have a number of inputs corresponding to the number 
of modalities involved in creation of the full description. 
Later the network-(3) connects with phase space map and 
creates elementary neural connection links. This way with 
evolution of the system we observe an empirical model of 
the environment, which develops not only by means of con-
nection links of phase space relations but also by the con-
nection links of knowledge unit properties. 

Further based upon abstractions of the first level, abstrac-
tions of the second level are formed which still preserve 
connectives with the sensory knowledge units. Abstractions 
of the third level evolve in a similar way. However they 
don’t have any direct sensory interpretation, and are kept 
only in verbal form and are used only in context. Knowl-
edge units represented in verbal form are stored in VWM 
which as mentioned above modeled with long-term memory 
structures and mechanisms  Here it seems to be interesting 
to observe hypothesis that ability to verbalize allows human 
to create abstractions of higher levels. Neurons grouped 
together by connection links make up the full description of 
a single knowledge unit. Naturally there exist a number of 
neurons that belong to a number of different groups describ-
ing different knowledge units, those neurons can be de-
scribed as being on the crossing between knowledge units. 
While sensory connections lead external stimuli to the net-
work-(1) – identifier of knowledge unit, further neurons are 
responsible only for the process of unification of informa-
tion creating higher levels of abstractions. Interactions on 
the level of abstractions lead to procession of high volumes 
of information, as even a simple abstraction of low level 
includes a high volume of information. 

Here is an illustration of the proposed architecture includ-
ing physical and logical network layers and Emotional Cen-
tre.

As mentioned earlier in the paragraph describing EC, 
neurons describing knowledge units are normally in the 
state of inactivity. When knowledge is being retrieved acti-
vation (impulse generation) of neurons describing knowl-
edge units involved occurs. Various neuron groups can 
switch into half active state which triggers connection links 
between related groups to switch into a working state (not 
impulse generation). Neurons located on crossings between 
various neuron groups receive inputs from a number of 
other groups describing knowledge units (minimum two) 
and accordingly switch to half active state (impulse genera-
tions), this process continues till required knowledge is re-
trieved and EC sends a signal to put neurons back into the 
state of inactivity.

7 Conclusions
Biologically inspired approaches and models have al-

ready proven useful in various machine intelligence tasks. 
Neural networks imitate only loosely the interconnectivity 
and dynamics of biological neurons, but provide neverthe-
less a powerful new formalism and information processing 
platform for challenging tasks like pattern recognition and 
associative memory. 

The biological idea of autonomous, self-building and self-
sustaining entities is a powerful paradigm that can be util-
ized in many ways in future AI systems. Biological proper-
ties like autonomy and the ability to develop new solutions 
on the fly become desirable if not obligatory in situations 
where we send AI systems into distant or hard-to-reach 
places where instant communication and remote control are 
not possible. Apart from cognitive and deductive capabili-
ties such systems also need to have a motivational subsys-
tem that keeps them acting in a goal-oriented fashion even 
in totally new and unexpected situations.

While individual neurons in an artificial neural network 
may be involved in arbitrarily complex and detailed infor-
mation processing tasks, they are simultaneously participat-
ing in system-wide signaling states characterized by macro-
scopic variables like total signal count and total system en-
tropy. We propose the modulation of these macroscopic 
variables as a novel way to implement a motivational feed-
back loop that would support not only learning and abstrac-
tion capabilities but also creative generation of fresh ideas 
and solutions. 

Making the individual neurons motivated to seek given 
activity levels we generate a system-wide pull towards a 
steady dynamic state characterized by total signal count and 
average signaling activity being in a given range. The role 
of Emotional Centre, the motivational control subsystem in 
our model, is to push the system further from this steady 
state in situations where the normal rate of information 
processing and the existing information-carrying macro-
structures in the form of stored patterns and generated ab-
stractions are not enough to solve a given challenge. Assum-
ing a system of limited memory capacity and connectivity, 
the temporarily applied higher entropy levels translate into 
intensified breaking down of existing patterns and abstrac-
tions and consequent recombination and regeneration of 



novel patterns and abstractions to be tested on the new situa-
tion.
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